Quaternionic analyticity

نویسندگان

  • Stefano De Leo
  • Pietro P. Rotelli
چکیده

~omplex analyticity is generalized to hypercomplex functions, quaternion or octonion, in such a manner that it’ includes the standard complex definition and does not reduce analytic functions to a trivial class. A brief comparison with other definitions is presented. @ 2003 Elsevier Ltd. All rights reserved. Keywords-&uaternions, Analytic functions, Differential operators.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Power series and analyticity over the quaternions

We study power series and analyticity in the quaternionic setting. We first consider a function f defined as the sum of a power series P n∈N qnan in its domain of convergence, which is a ball B(0, R) centered at 0. At each p ∈ B(0, R), f admits expansions in terms of appropriately defined regular power series centered at p, P n∈N (q−p)bn. The expansion holds in a ball Σ(p,R− |p|) defined with r...

متن کامل

High-dimensional topological insulators with quaternionic analytic Landau levels.

We study the three-dimensional topological insulators in the continuum by coupling spin-1/2 fermions to the Aharonov-Casher SU(2) gauge field. They exhibit flat Landau levels in which orbital angular momentum and spin are coupled with a fixed helicity. The three-dimensional lowest Landau level wave functions exhibit the quaternionic analyticity as a generalization of the complex analyticity of ...

متن کامل

From 2D conformal to 4D self-dual theories: quaternionic analyticity

It is shown that self-dual theories generalize to four dimensions both the conformal and analytic aspects of two-dimensional conformal field theories. In the harmonic space language there appear several ways to extend complex analyticity (natural in two dimensions) to quaternionic analyticity (natural in four dimensions). To be analytic, conformal transformations should be realized on CP 3, whi...

متن کامل

Four Dimensional Integrable Theories

There exist many four dimensional integrable theories. They include self-dual gauge and gravity theories, all their extended supersymmetric generalisations, as well the full (non-self-dual) N=3 super Yang-Mills equations. We review the harmonic space formulation of the twistor transform for these theories which yields a method of producing explicit connections and metrics. This formulation uses...

متن کامل

Harmonic space and quaternionic manifolds

We find a principle of harmonic analyticity underlying the quaternionic (quaternionKähler) geometry and solve the differential constraints which define this geometry. To this end the original 4n-dimensional quaternionic manifold is extended to a biharmonic space. The latter includes additional harmonic coordinates associated with both the tangent local Sp(1) group and an extra rigid SU(2) group...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Appl. Math. Lett.

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2003